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Abstract. We investigate the ground-state energy of the π−p atom (pionic hydrogen) in the framework of
QCD + QED. In particular, we evaluate the strong energy-level shift. We perform the calculation at next-
to-leading order in the low-energy expansion in the framework of the relevant effective field theory. The
result provides a relation between the strong energy shift and the pion–nucleon S-wave scattering lengths
– evaluated in pure QCD – at next-to-leading order in isospin-breaking and in the low-energy expansion.
We compare our result with available model calculations.

1 Introduction

The theory of strong interactions has entered a high pre-
cision phase in recent years, both experimentally and the-
oretically. On the experimental side, we mention
(i) the muon anomalous magnetic moment measurement
at Brookhaven [1]. A calculation of (g− 2)µ that matches
the foreseen experimental accuracy requires that the cross
section e+e− → π+π− in the low–energy region is known
to better than one percent;
(ii) experiments that aim to determine hadronic scattering
lengths with high precision are presently running at CERN
[2] and at PSI [3,4].

On the theory side, the ππ scattering lengths have re-
cently been calculated at the few-percent level in [5]. In
this article, we are concerned with the ongoing experiment
on the measurement of the energy levels and decays of the
π−p atom (pionic hydrogen) at PSI [3,4]. There are plans
to measure the strong interaction width and shift of the
ground state at the percent level. These measurements can
then be used to directly extract from data the πN scat-
tering amplitude at threshold. The aim of the experiment
goes, however, further: it intends to extract from these
measurements the S-wave πN scattering lengths a+

0+ +a−
0+

in pure QCD with high precision. In order to achieve this
goal, the relation between the scattering lengths and the
threshold amplitude must be known at an accuracy that
matches the accuracy of the experiment. In other words,
one has to remove isospin-breaking effects from the thresh-
old amplitude with high precision, in the framework of
QCD + QED.

Isospin-breaking effects in low–energy πN scattering
have been extensively discussed in the literature on the
basis of a potential model approach. The discussion rele-
vant to the problem of pionic hydrogen can be found in [6,
7]. Here, we rely on the effective theory of QCD + QED,
a method already invoked [8–11] in the analogous pro-
gram for the π+π− atom investigated presently at CERN
[2]. For a critical comparison between the potential model
and the effective theory framework, we refer the reader to
[12].

In the case of pionic hydrogen considered here, the
relation between the strong energy-level shift ε1s of the
ground state and the threshold π−p scattering amplitude
has been worked out in the effective theory in [13],

ε1s = −α3µ3
cTπN

2πMπ

{
1− α(lnα− 1)µ2

cTπN

2πMπ

}
+ · · · (1.1)

Here, µc = mpMπ(mp+Mπ)−1 denotes the reduced mass1
of the π−p system, and TπN is the threshold amplitude
for the process π−p → π−p, evaluated at next-to-leading
order in isospin breaking. Furthermore, α � 1/137.036
denotes the fine-structure constant, and the ellipsis stands
for the higher-order terms in isospin breaking (see below).
In the isospin symmetry limit, the threshold amplitude
is proportional to a particular combination of the S-wave
pion–nucleon scattering lengths a±

0+ (we use the notation
of [14]),

1 We denote the charged pion mass (the proton mass) with
Mπ(mp)
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TπN = T 0
πN + αT γ + (md −mu)T m,

T 0
πN = 4π

(
1 +

Mπ

mp

)
(a+

0+ + a−
0+). (1.2)

The isospin-breaking amplitudes T γ,m depend on the
renormalization group invariant scale of QCD, and on
the quark mass m̂ = (mu + md)/2 (we consider two-
flavor QCD). Once T γ,m are calculated, a measurement
of the shift ε1s allows one to determine the combination
a+
0+ + a−

0+. Similarly, a width measurement of the ground
state provides |a−

0+|. The values of these scattering lengths
are correlated e.g. with the pion–nucleon sigma term [15],
with the pion–nucleon coupling constant [16], and with
the Goldberger-Treiman relation, which relates the pion–
nucleon coupling constant to the axial charge. It goes with-
out saying that the scattering lengths are therefore very
central objects in the analysis of pion–nucleon reactions.
We refer the reader to [4] for a recent investigation of these
questions. Here, we concentrate on the evaluation of the
isospin-breaking amplitudes T γ,m.

The amplitudes T γ,m can e.g. be evaluated in the
framework of chiral perturbation theory. Writing the en-
ergy shift in the form

ε1s = −2α3µ2
c(a

+
0+ + a−

0+)(1 + δε), (1.3)

the leading-order calculation [13] gives δε = (−4.8± 2.0) ·
10−2, whereas the calculation by [6] in a potential model
framework leads to δε = (−2.1±0.5)·10−2. How should the
two calculations be compared? As has been pointed out in
[13], the leading-order terms in the effective theory are due
to effects that are not all consistently taken into account
in the potential model calculation. On the other hand, as
has been emphasized in footnote 1 in [4], mass splitting
effects in strong loops and γn intermediate states show
up only at higher orders in the chiral expansion. It is the
aim of the present article to carry out the calculation of
T γ and T m at next-to-leading order, where these effects
come into play. Further, the interference effect between
vacuum polarization and strong interactions will be taken
into account as well2 – they occur formally at next-to–
next-to leading order in isospin breaking.

Isospin breaking effects in πN scattering have been
studied already previously [see [17] and references therein]
by using heavy baryon chiral perturbation theory
(HBChPT). We were not able to directly use these re-
sults, for the following reason. In [17], the authors calcu-
late physical amplitudes in different channels, and study
combinations thereof that vanish in the isospin symme-
try limit. This is not what is needed for pionic hydrogen,
where one has to extract an isospin-breaking correction
to a single amplitude (the π−p elastic amplitude, in the
case of the energy levels). Reference [17] does not provide
explicit expressions for the physical amplitudes, and we
have therefore performed an independent calculation.

In [17], HBChPT was used to calculate the amplitudes.
Here, we rely on the framework developed by Becher and

2 We are indebted to T. Ericson for pointing out to us that
this may be an important effect

Leutwyler [18]. This method is manifestly Lorentz invari-
ant and preserves chiral power counting in the case where
baryons and Goldstone bosons are running in the loops.
In the present context, contributions from virtual photons
are needed as well. We show that the method proposed in
[18] can straightforwardly be adapted to this case. Individ-
ual Feynman diagrams contain ultraviolet (infrared) sin-
gularities, due to integration over large (small) momenta.
We use dimensional regularization to tame both of these
singularities. The counterterms from the higher-order chi-
ral Lagrangians cancel the ultraviolet poles at d = 4 in the
final result. In order to check this cancellation, we eval-
uate the one-loop divergences also with the heat-kernel
method. Finally, infrared divergences disappear in physi-
cal quantities at the end of the calculation. In our case, this
concerns the π−p → π−p scattering amplitude at thresh-
old, with the Coulomb singularity removed. Lack of phase
space forbids the emission of soft photons, as a result of
which the elastic scattering amplitude must be infrared
finite at threshold. Needless to say that this cancellation
serves as another welcome check on our calculation.

The final result for δε contains, at the next-to-leading
order considered here, several low-energy constants
(LECs) that parameterize the structure of the effective
theory at this order. All but one of these LECs are under
experimental control or expected to generate a small ef-
fect. The remaining one, f1, enters the expression already
at leading order [13]. Whereas this constant is expected to
contribute sizably to δε, no precise determination in terms
of experimental data is available yet. We shall explain why,
in our opinion, a precise determination of a+

0+ + a−
0+ from

a measurement of the energy-level shift ε1s has to await a
corresponding precise determination of f1, and more im-
portantly, why potential models are not of help in this
respect.

The layout of this paper is as follows. In Sect. 2 we
introduce the definition of the threshold scattering ampli-
tude in the presence of photons, and give the relation of
this quantity to the strong energy shift of the π−p atom. In
Sect. 3 we display the set of the meson and meson–nucleon
chiral Lagrangians, which are used in the calculations of
the threshold scattering amplitude at O(p3). In Sect. 4 we
calculate the tree-level contributions to the threshold am-
plitude at O(p3). In Sects. 5 and 6, we outline the gen-
eralization of the infrared regularization procedure [18],
needed in the presence of virtual photons. The general pro-
cedure for the calculation of the S-matrix elements in the
infrared regularization in the presence of virtual photons
is described in Sect. 7, where we also discuss the separa-
tion of infrared and ultraviolet divergences. Section 8 deals
with the calculation of the vertex diagram with virtual
photons. Here, we demonstrate the origin of the Coulomb
phase and the singular piece of the scattering amplitude at
threshold. In Sect. 9 we present the final result of our cal-
culations of the threshold amplitude, and in Sect. 10 we
discuss the size of the relevant low-energy constants. In
Sect. 11, we evaluate the ground-state energy-level shift
numerically and compare the result with model calcula-
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tions. Section 12 contains our summary and conclusions.
Technical details are relegated to the appendices.

2 Threshold amplitude
and the strong energy-level shift

It is both conventional and convenient to split the ground-
state energy into electromagnetic and strong parts,

E1s = Eem
1s + ε1s. (2.1)

Despite the fact that this splitting cannot be understood
literally (e.g. there are contributions from strong interac-
tions in Eem

1s ), it turns out to be useful in the theoretical
analysis of hadronic atom data.

The electromagnetic part Eem
1s has been worked out in

[6,13]. The results of these two investigations – that were
performed in completely different settings – agree numer-
ically with high precision. The complete analytic result
of the electromagnetic energy at O(α4), which is given
in [13], includes relativistic corrections, finite-size effects
from proton and pion charge radii, and the correction due
to the anomalous magnetic moment of the proton. In ad-
dition, it includes the contribution from the electron vac-
uum polarization, which arises formally at O(α5), but is
amplified by a large coefficient (Mπ/me)2. The evalua-
tion of Eem

1s in [6] includes in addition some higher-order
corrections (vertex corrections, corrections to the vacuum
polarization contribution), that were omitted in [13]. Nu-
merically, however, they are much smaller than the ones
included in both approaches.

What is exactly measured in the experiment at PSI, is
the transition energy Emeas

3p−1s between the 3p and 1s states
[3,4]. Since the electromagnetic shifts of both levels are
known to a very high precision [6], and since the strong
shift in the 3p state is very small, this measurement al-
lows one to directly extract the strong shift of the 1s-level
according to

ε1s = Eem
3p−1s − Emeas

3p−1s. (2.2)

The aim of the new experiment at PSI is to measure ε1s at
the percent level [3]. Once this measurement is performed,
one is faced with the task of extracting the strong S-wave
πN scattering lengths a+

0+ + a−
0+ from this quantity.

In order to formulate the problem rigorously, it is con-
venient to introduce a common counting rule for the
isospin-breaking effects, parameterized by the fine-struc-
ture constant α and the up and down quark mass differ-
ence md − mu. We have found it useful to count these
effects at the same order, introducing the formal param-
eter δ ∼ α ∼ md −mu. Equation (1.1), which relates the
strong shift ε1s to the threshold amplitude, is then valid
[13] up to and including terms of order δ4 – hereafter,
this is referred to as the “next-to-leading order in isospin
breaking”. In the following, it is useful to introduce the
notation

TπN = T 0
πN + δT ,

δT = αT γ + (md −mu)T m. (2.3)

The isospin symmetric part T 0
πN refers to pure QCD,

where the pion and the nucleon masses are equal, by con-
vention, to the charged pion and to the proton masses,
respectively. From (1.1), (1.2) and (1.3), the expression
for the isospin-breaking correction δε can now be read-
ily worked out. One still has to add the correction δvac

ε

due to the interference of vacuum polarization and strong
interactions. The complete expression takes the form

δε =
δT

4π(1 + Mπ/mp)(a+
0+ + a−

0+)
+ K + δvac

ε ,

K = −2α(lnα− 1)µc(a+
0+ + a−

0+). (2.4)

The only unknown ingredient in (2.4) is thus the isospin-
breaking part δT of the threshold amplitude. The chiral
expansion of the amplitudes T γ and T m is performed in
the variable r = Mπ/mp – the expansion of δT therefore
starts at order p2 (counting α and md −mu as O(p2), as
usual),

δT = δT2 + δT3 + O(p4). (2.5)

The leading term δT2 has been determined in [13]. Here,
we evaluate δT3, which amounts to a one-loop calculation
of the π−p→ π−p amplitude. We will show below that the
chiral expansion of T m starts at O(r2). At the accuracy we
are concerned with here, the quark mass difference does
thus not enter. [The effect coming from the insertion of
the quark mass difference into loops may be non-negligible
[19]. Its evaluation requires the calculation of the threshold
amplitude at order p4, which is beyond the scope of this
work.]

The contribution δvac
ε has been omitted in [13], since

formally it is of higher order in the parameter δ. However,
numerically it is not negligible, because of the large coeffi-
cient containing Mπ/me. The calculation of this correction
within a non-relativistic effective Lagrangian approach has
been carried out in [20]. Here, we use this result, contained
in Table II of [20]:

δvac
ε = 2

δΨ(0)
Ψ(0)

= 0.48%, (2.6)

where Ψ(0) stands for the pionic hydrogen wave function
at the origin, and where δΨ(0) denotes the correction to
this wave function due to vacuum polarization. The re-
sult (2.6) agrees perfectly with the value δvac

ε = 0.46%
obtained within the potential model of [6].

We now present the exact definition of the threshold
amplitude TπN which enters the expression (1.1) for the
strong energy shift of the ground state. Let us consider
the elastic scattering process π−(q) + p(p) → π−(q′) +
p(p′) in the vicinity of the physical threshold, at first order
in the fine-structure constant α. External momenta are
on the mass shell p2 = p′2 = m2

p, q2 = q′2 = M2
π . The

Mandelstam variables are defined in the standard manner,
s = (p + q)2 = (p′ + q′)2, t = (p − p′)2 = (q − q′)2,
u = (p − q′)2 = (p′ − q)2, s + t + u = 2(m2

p + M2
π). The

3-momentum of the pion and of the nucleon in the CM
frame is given by |p| = λ1/2(s, m2

p, M
2
π)/(2(s1/2)), where
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Fig. 1. Definition of the truncated
π−p → π−p amplitude. The filled ver-
tices in the diagram with the pho-
ton exchange correspond to vector form
factors of the pion and of the proton,
calculated in pure QCD. T̄πN corre-
sponds to the truncated amplitude

λ(x, y, z) = (x−y−z)2−4yz denotes the triangle function.
The scattering angle is given by cos θ = 1 + t/(2p2).

The scattering amplitude for this process can be ex-
pressed in terms of two scalar functions D and B 3,

TπN = ū(p′)
{

D(s, t)− 1
4mp

[�q′,�q]B(s, t)
}

u(p),

ū(p)u(p) = 2mp. (2.7)

In the context of the energy shift considered here, only the
amplitude D(s, t) is relevant. In the next step, we define
the truncated amplitude D̄, which is obtained from the
scattering amplitude (2.7) by subtracting the one-photon
exchange contribution displayed in Fig. 1,

D̄(|p|, cos θ) .= D̄(s, t) = D(s, t)

− e2Fπ(t)F1(t)(s− u)
2mpt

, (2.8)

where Fπ(t) and F1(t) denote the pion electromagnetic
form factor and the nucleon Dirac form factor, respec-
tively.

In the presence of virtual photons, at order α, the scat-
tering amplitude D̄(|p|, cos θ) contains Coulomb singular-
ities at the physical threshold [13,11]. In particular, there
emerges the Coulomb phase which is divergent in physical
dimensions d = 4 (cf. with [22]),

θC(|p|) =
µc

|p|µ
d−4

{
1

d− 4

− 1
2
(Γ ′(1) + ln 4π) + ln

2|p|
µ

}
. (2.9)

Here µ stands for the scale in dimensional regularization.
After removing the Coulomb phase, the behavior of

the real part of the amplitude D̄(|p|, cos θ) in the vicinity
of threshold, at order α, is given by [13]

Re
{
e−2iαθC(|p|)D̄(|p|, cos θ)

}∣∣∣∣
|p→0

=
B1

|p| + B2 ln
|p|
µc

+ TπN + O(|p|), (2.10)

3 It is well known that the above scattering amplitude in the
presence of electromagnetic interactions is infrared singular in
perturbation theory. In this paper we use dimensional regu-
larization to tame both, infrared (IR) and ultraviolet (UV)
divergences. Thus, the scattering amplitudes D and B in (2.7)
are meant to be evaluated at d �= 4 (see below). We use the
notation of Bjorken–Drell [21] for the Dirac matrices

where the quantities B1, B2 can be related to the S-wave
πN scattering lengths (their explicit form is not needed
in the applications to the hadronic atom problem). The
quantity TπN , which is referred to in this article as the
threshold scattering amplitude, is infrared finite. It deter-
mines ε1s according to (1.1), and is the central object of
our investigation.

3 Lagrangians

In this section, we display the low-energy effective La-
grangians which are used in the calculation of the π−p
amplitude. In particular, we provide the meson–nucleon
Lagrangian at order e2p, whose divergences are consis-
tent with the “standard” choice of the meson O(p4) [23],
O(e2p2) [24], and nucleon O(p3) [25,26] Lagrangians. The
reason for doing so is that the O(e2p) Lagrangian which
is available in the literature [19,27,28] is not consistent
with this choice. The details of the derivation, which was
performed by using the Berezinian approach [29,30], can
be found in Appendix B. In this appendix, we in addition
give the relation between two sets of the LECs which are
defined by the choice of the O(p4)-meson Lagrangian ei-
ther in the form of [23], or [31].

The full Lagrangian consists of meson and nucleon
parts, as well as the free photon Lagrangian together with
the gauge-fixing term,

Leff = Lπ + LN + Lγ ,

Lπ = L(p2)
π + L(e2)

π + L(p4)
π + L(e2p2)

π + · · · ,

LN = L(p)
N + L(p2)

N + L(e2)
N + L(p3)

N + L(e2p)
N + · · · , (3.1)

where

L(p2)
π + L(e2)

π + Lγ =
F 2

4
〈dµU†dµU + χ†U + U†χ〉

+ ZF 4〈QUQU†〉 − 1
4
FµνFµν − 1

2a
(∂µAµ)2, (3.2)

L(p4)
π =

7∑
i=1

liO
(p4)
i , L(e2p2)

π = F 2
10∑

i=1

kiO
(e2p2)
i ,

L(p)
N = Ψ̄

(
i �D −m +

1
2
gA �uγ5

)
Ψ,

L(p2)
N =

7∑
i=1

ciΨ̄O
(p2)
i Ψ, L(e2)

N = F 2
3∑

i=1

fiΨ̄O
(e2)
i Ψ,

L(p3)
N =

23∑
i=1

diΨ̄O
(p3)
i Ψ, L(e2p)

N = F 2
12∑

i=1

giΨ̄O
(e2p)
i Ψ,

(3.3)
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where 〈A〉 denotes the trace of the matrix A. The building
blocks for the mesonic Lagrangians are

dµU = ∂µU − iRµU + iULµ,(
Rµ

Lµ

)
= vµ ± aµ +QAµ,

Rµν = ∂µRν − ∂νRµ − i[Rµ,Rν ],
Lµν = ∂µLν − ∂νLµ − i[Lµ,Lν ],

Fµν
± = u†Rµνu± uLµνu†,

F̂µν
± = Fµν

± −
1
2
〈Fµν

± 〉,

χ = 2B(s + ip), dµχ = ∂µχ− iRµχ + iχLµ,

Q± =
1
2
(uQu† ± u†Qu),

Cµ
R = −i[Rµ,Q], Cµ

L = −i[Lµ,Q],

Cµ
± =

1
2
(uCµ

Lu† ± u†Cµ
Ru), (3.4)

where U is a unitary 2 × 2 matrix, and Ψ is the nucleon
field. As usual, s, p, vµ, aµ denote external scalar, pseu-
doscalar, vector and axial fields, B is a constant related
to the quark condensate, and Q = ediag (2/3,−1/3) is the
quark charge matrix. The axial source is taken traceless,
〈aµ〉 = 0.

Building blocks for the meson–nucleon Lagrangians in
the presence of virtual photons are

Dµ = ∂µ + Γµ, U = u2, uµ = iu†dµUu†,

Γµ =
1
2
[u†, ∂µu]− i

2
u†Rµu− i

2
uLµu†,

χ± = u†χu† ± uχ†u, χ̂+ = χ+ −
1
2
〈χ+〉,

F±
µν = u†Rµνu± uLµνu†, F̂+

µν = F+
µν −

1
2
〈F+

µν〉,

Q± =
1
2
(uQu† ± u†Qu), Q̂± = Q± −

1
2
〈Q±〉,

c±
µ = − i

2
(u[Lµ, Q]u† ± u†[Rµ, Q]u), (3.5)

where Q = e diag(1, 0) denotes the nucleon charge ma-
trix, and Rµ, Lµ, Rµν , Lµν are defined just like their pi-
onic counterparts Rµ, Lµ, Rµν , Lµν respectively, with Q
replaced by Q. We have set the charge matrices Q and
Q to their constant physical values, and do not consider
the most general expression of the effective Lagrangians
containing space-dependent spurion fields QL,R. Further-
more, in (3.3) we drop terms which do not contain pion
fields, and terms of order e4.

We comment on the LECs F, gA, Z, ci, fi, · · · The first
one, F , denotes the pion decay constant in the chiral limit,
and gA is the axial charge, again at mu = md = 0. The
quantity Z is related to the pion mass difference,

M2
π0 = (mu + md)B + O(m2

q, e
2mq, e

4),

∆π = M2
π −M2

π0 = 2e2F 2Z + O(m2
q, e

2mq, e
4). (3.6)

The couplings ci, fi are finite, if the calculation of the loop
diagrams is performed in a manner that respects chiral

power counting. The divergences in the remaining LECs
are given by

li = γiλ + lri (µ), ki = σiλ + kr
i (µ),

di =
βi

F 2 λ + dr
i (µ), gi =

ηi

F 2 λ + gr
i (µ), (3.7)

where

λ =
µd−4

16π2

(
1

d− 4
− 1

2
[Γ ′(1) + ln 4π + 1]

)
. (3.8)

In Appendix A we list the operators O
(k)
i , as well as

the divergent parts of the low-energy constants, and pro-
vide references to the original literature. Since our oper-
ator basis in the mesonic sector is defined in a standard
manner, numerical values of lri , k

r
i can be directly taken

from the existing analyses. The definition of the finite con-
stants ci and fi coincides with that from [25] and [27],
respectively (in the latter, the notation f ′

i instead of fi is
used for the LECs in the relativistic theory). Our choice
for those dr

i that contribute to the πN scattering ampli-
tude, corresponds to the one of [32], modulo the relations
(B.14), which display the effect of the different choice of
the mesonic basis here and in [32]. Finally, for the reasons
given in Appendix B, it is not clear to us how we can com-
pare the couplings gr

i used here, with the ones determined
in [17].

In the actual calculation of the scattering amplitude,
we invoke an exponential parameterization of the matrix
U ,

U = exp iπ/F, π =
(

π0
√

2π+√
2π− −π0

)
, (3.9)

and use π as an interpolating field for the pions. Further,
we set

χ = 2Bdiag(mu, md), (3.10)

and perform the calculations in the Feynman gauge a = 1.

4 Tree contributions

The tree contributions to the threshold scattering ampli-
tude TπN include the pseudovector Born diagrams Fig. 2,
and the contributions from the counterterms in the ef-
fective Lagrangians, indicated in Fig. 3. Insertions in the
external lines are not displayed – they will be included
through mass and wave function renormalization in Sect. 9.

The scattering matrix elements are evaluated with me-
son momenta that are on the mass shell, q2 = q′2 = M2

π ,
and with spinors that obey the Dirac equation with the
physical proton mass, �pu(p, s) = mpu(p, s). On the other
hand, the neutron mass in the internal line in Fig. 2b is the
chiral symmetric one. It receives corrections from coun-
terterm insertions©2 in Fig. 3, and from the self-energy
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a b

Fig. 2a,b. The Born diagrams, vector a and axialvector b
couplings

diagrams s1 and s2 in Fig. 10. Here, we merge these con-
tributions and evaluate the diagram Fig. 2b with the phys-
ical neutron mass. [The subtraction in the one-loop self-
energy-type diagrams s1 and s2 in Fig. 10 is then carried
out on the mass shell.] In this convention, the contribution
from the Born diagrams, Fig. 2, becomes

T B =
Mπ

2F 2 −
g2
AM2

π

2F 2(mn + mp + Mπ)
. (4.1)

Next consider the vertex corrections©1 – these can be ab-
sorbed in gA. Since they are proportional to the quark
masses mu, md, they do not contribute at order p3, and
we drop them altogether. The polynomial contributions
©3 arise from two-nucleon two-pion vertices in the effec-
tive Lagrangians. We find4

T ct = −4M2
π0

F 2 c1 +
2M2

π

F 2 (c2 + c3)−
e2

2
(4f1 + f2)

+
4M3

π

F 2 (d1 + d2 + d3) +
8MπM2

π0

F 2 d5

+ 2e2Mπ(g6 + g8). (4.2)

5 Two-point functions of pion fields

In [18], Becher and Leutwyler have shown how power
counting in baryon chiral perturbation theory (pions and
nucleons running in the loops) can be incorporated in a
manifestly Lorentz invariant manner. Here, we extend this
framework to include virtual photons. In addition to the
question of power counting, virtual photons generate the
standard problems: poles in two-point functions are trans-
formed into branch points, wave function renormalization
constants become ill-defined, and truncated on-shell Green
functions in general cease to exist in four dimensions. In
order to identify these infrared singularities5, we start the
discussion of the low-energy expansion of Green functions
with the two-point function of pseudoscalar quark cur-
rents. In this case, power counting does not pose a prob-
lem, because one is concerned with mesons and photons
only. Furthermore, ultraviolet divergences do not show

4 The normalization of the low-energy constants f1,2 used in
the present paper differs from that of [13]: F 2fhere

1,2 = fold
1,2

5 There are two types of infrared singularities in the present
context: The ones associated with non-analytic terms in the
chiral expansion, and singularities generated by the presence
of photons. Since it will always be clear what singularities we
have in mind, we do not distinguish in the following between
the two, which makes the notation less clumsy

� � � ��

Fig. 3. Counterterm contributions. Insertions on the external
lines are not shown

Fig. 4. Photon contribution to the two-point function of pseu-
doscalar fields

up in the final result either, because Green functions of
quark currents are well-defined objects in the effective
Lagrangian framework. Therefore, the only obstacles in
this case are the infrared divergences generated by pho-
ton loops.

5.1 Pseudoscalar two-point function

The pseudoscalar densities P±
5 (x) = q(x)iγ5τ

1±i2q(x) may
be used as interpolating fields for the charged pions. To
evaluate scattering matrix elements, the residue of the
two-point function

G(s) = i
∫

dxe−iqx〈0|TP−
5 (x)P+

5 (0)|0〉; s = q2 (5.1)

at s = M2
π is needed – it determines the wave func-

tion renormalization constant. However, in the presence
of virtual photons, G develops a branchpoint, not a pole,
and that residue does not exist. There are two standard
procedures to deal with the situation: Either, one intro-
duces a photon mass, which shifts the branchpoint to
s = (Mπ + mγ)2, as a result of which G indeed contains
a pole at the pion mass. The photon mass is then sent to
zero at the very end of the relevant calculations of physical
quantities. Or one instead uses dimensional regularization
to tame both, ultraviolet and infrared divergences. In the
following, we use the latter method. Let us consider the
low energy expansion of G. Including contributions from
one virtual photon as indicated in Fig. 4, and adding the
counterterms from L(e2p2)

π in (3.1), we find

G(s) =
4F 2B2R(s)

M2
π − s

,

M2
π = M2 − e2M2

16π2

{
3 ln

M2

µ2 − 4
}

− e2M2Kr
M + · · · ; M2 = (mu + md)B,

R(s) = 1− e2

8π2

{
r(s) + ln

M2

µ2 − 1
}
− e2Kr

G + · · · ,

r(s) =
s + M2

s
ln

M2 − s

M2 ,

Kr
M =

20
9

(kr
1 + kr

2 − kr
5)−

92
9

kr
6 −

4
9
kr
7 − 8kr

8,

Kr
G =

20
9

(kr
1 + kr

2 − 2kr
5 − 2kr

6)−
8
9
kr
7 − 8kr

8. (5.2)
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[Here, we have omitted the contributions from the lead-
ing electromagnetic term proportional to Z in (3.6), such
that M2

π = M2
π0 at leading order.] The ellipses denote ad-

ditional terms in the low-energy expansion. The correlator
G(s) is finite at nonexceptional momenta, but the residue
develops a logarithmic singularity at s = M2

π , manifest in
the function r(s) [at the order of the expansion considered
here, we may replace M2 in the function r(s) by M2

π ].
In order to continue, we keep the dimension different

from four until the very end of the calculation of physical
quantities. The function r(s) becomes

r(s, d) =
a + 1
a− 1

(4π)ωΓ (ω)M−2ω

∫ 1

0
dxx−ω

×
[
x−ω −(1− a + ax)−ω

]
+ O(d− 4),

ω = 2− d

2
, a = s/M2. (5.3)

At nonexceptional momenta, r(s, d) approaches r(s) as
d → 4. If d is bigger than four, one may perform the
mass-shell limit,

R(s, d) = 1− e2

8π2

[
−Cπ

IR + ln
M2

µ2

]

− e2Kr
G + O(d− 4); s→M2

π ,

Cπ
IR = 2Md−4

π

(
1

d− 4
−1

2
(Γ ′(1) + ln(4π) + 1)

)
. (5.4)

The infrared singularity manifests itself in a pole at d = 4,
which is due to integration over small loop momenta. We
indicate the origin of this singularity with the symbol IR
in the divergent quantity Cπ

IR.
We do not use pseudoscalar densities as interpolating

fields – it is simpler to use the pion fields instead. In this
case, additional singularities occur at d = 4, as is shown
in the following subsection.

5.2 Two-point function of the pion fields

The Green functions of the pion fields depend on the pa-
rameterization used for the matrix U(x) in the effective
Lagrangian. Here, we use the exponential parameteriza-
tion (3.9), and consider the propagator of the charged
fields,

Rπ(s, d)
M2

π − s
= i
∫

dxe−iqx〈0|Tπ−(x)π+(0)|0〉; s = q2.

(5.5)

We again include the photon loop from Fig. 4 and the
pertinent counterterms from L(e2p2)

π at Z = 0. The result
for the pion mass is the same as before, whereas several
of the counterterms ki are now absent in the residue. We
find

Rπ(s, d) = 1− e2

32π2

[
4r(s, d) + Cπ

UV + 3 ln
M2

µ2 − 4
]

Fig. 5. Pion loop contributions to the two-point function (5.5).
Neutral and charged pions are running in the loop

Fig. 6. Self-energy diagram for a heavy field of mass m. The
solid line denotes the heavy field, and the dash-dotted line
stands for a massless scalar particle

−e2Kr
π + · · · , Kr

π =
20
9

(kr
1 + kr

2),

Cπ
UV = 2Md−4

π

(
1

d− 4
−1

2
(Γ ′(1) + ln(4π) + 1)

)
. (5.6)

In contrast to the two-point function G(s), the propagator
of the pion field is ultraviolet divergent: the function Rπ

develops a pole in four dimensions also at nonexceptional
momenta. We indicate the origin of this singularity with
the symbol UV in the divergent quantity CUV. The rea-
son for the occurrence of this pole is well understood: the
effective theory guarantees that Green functions of quark
currents are ultraviolet finite, whereas the pion fields sim-
ply serve as integration variables in the path integral and
are devoid of any physical significance.

We conclude that dimensional regularization generates
two different types of poles at d = 4: those that are due to
integrations over large loop momenta, and those that are
due to considering the mass shell restriction (integrations
over small loop momenta). In each graph, one may easily
distinguish between the two types of singularities, and we
will do so below, by denoting the corresponding singular
quantities with indices UV and IR, respectively. As we
shall see later, distinguishing between the two divergences
serves as a powerful check on our calculation.

Later in this article, we also need the contributions
from the pion loops displayed in Fig. 5. Including also the
terms generated by the leading electromagnetic term pro-
portional to Z which contributes to the pion mass differ-
ence, we find

Zπ = Rπ(M2
π , d) = 1 +

e2

8π2 (Cπ
IR − Cπ

UV)

+
1

24π2F 2 (M2
π − e2F 2Z)Cπ

UV −
e2Z

24π2

− 20e2

9
(k1 + k2) + O(e2M2, M4, e4) + O(d− 4). (5.7)

Here, it is convenient to use the unrenormalized couplings
k1,2.
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6 Two-point function of baryon fields

6.1 Self-energy of the heavy scalar field

We now consider the case where a heavy particle interacts
with the photon. To illustrate the method to preserve chi-
ral power counting in this case, we consider the self-energy
diagram Fig. 6, which represents a heavy scalar particle of
mass m, interacting with a massless field,

Σ(s, d) =
1

i(2π)d

∫
ddk

[−k2][m2 − (p− k)2]

= (4π)−(2−w)Γ (w)
∫ 1

0
dxz−w,

z = x(m2 − s(1− x)); s = p2. (6.1)

Evaluation in the standard manner shows that Σ is of chi-
ral order zero, Σ ∼ const., near the mass shell, whereas
power counting suggests that it is of order one, Σ ∼
(m2−s)/m2. In [18], it has been shown that power count-
ing with nucleon and pion fields is preserved, if one extends
the integration over the Feynman parameter – which com-
bines the heavy and light fields – from zero to infinity.
Proceeding in the same manner for photon fields, we find
that

ΣI(s, d) = (4π)−(2−w)Γ (w)
∫ ∞

0
dxz−w

= (4π)−(2−w)Γ (w)Ω1−2ws−w

∫ ∞

0
dxx−w(1 + x)−w;

Ω = (m2 − s)/s, (6.2)

where the index I denotes the infrared part à la Becher–
Leutwyler. It is seen that the self-energy diagram is now of
chiral order one near threshold. The mass shell constraint
is performed by first continuing the result to dimensions
larger than four, as before. One finds that

ΣI(m2, d) = ΣI ′
(m2, d) = 0, d > 4, , (6.3)

where the prime denotes a derivative with respect to s. In
other words, the self-energy diagram Fig. 6 does contribute
neither to the mass nor to the residue of the two-point
function in this prescription.

We found it very useful to distinguish between in-
frared and ultraviolet divergences also here. This may be
achieved as follows. We consider the self-energy and its
derivative at s = m2. From (6.1), one has

ΣS(m2, d) =
1

16π2 (−CUV + 1),

CK = 2md−4
(

1
d− 4

−1
2
(Γ ′(1) + ln(4π) + 1)

)
,

K = UV, IR. (6.4)

We have indicated with the index S the standard proce-
dure, where the integral over the Feynman parameter is

performed from zero to one. We have booked the singu-
larity at d = 4 as an ultraviolet one for obvious reasons.
The derivative is

ΣS ′
(m2, d) =

1
32π2m2 (CIR − 1), (6.5)

where the singularity at d = 4 is now due to integra-
tions over small momenta and therefore booked as an in-
frared singularity. The Becher–Leutwyler infrared regular-
ized part is obtained by subtracting from these expressions
the “regular part” of the Feynman diagram,

ΣR(s, d) = −(4π)−(2−w)Γ (w)
∫ ∞

1
dxz−w. (6.6)

This integral converges for d < 3 – the relevant poles at
d = 4 are therefore booked as ultraviolet. We find

ΣR(m2, d) =
1

16π2 (−CUV + 1),

ΣR′
(m2, d) =

1
32π2m2 (CUV − 1), (6.7)

and therefore

ΣI(m2, d) = ΣS(m2, d)−ΣR(m2, d) = 0, (6.8)

ΣI ′
(m2, d) =

1
32π2m2 (CIR − CUV). (6.9)

The result for the value of the self-energy on the mass
shell agrees with (6.3), whereas its derivative becomes the
same upon identifying CIR with CUV.

6.2 The nucleon propagator

The infrared regularized nucleon propagator is evaluated
in a completely analogous manner, applying infrared reg-
ularization to both, the pion and the photon field (Fig. 7).
In the following, we only need the wave function renor-
malization constant for the proton field. We define it in
the following manner. The propagator is

Sαβ(p, d) = i
∫

dxeipx〈0|TPα(x)P̄ β(0)|0〉, (6.10)

where P (x) denotes the proton field. The Z-factor is ob-
tained from{

lim
p2→m2

p

(mp− �p)S(p, d)

}
u(p, r) = ZNu(p, r), d > 4,

(6.11)

�

Fig. 7. Photon and pion loop contribution to the two-point
function (6.10) of the proton. Neutral and charged pions are
running in the loop
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Fig. 8. The electromagnetic vector-type diagrams

where mp denotes the physical proton mass, u(p, r) is a
spinor in d dimensions with (� p − mp)u(p, r) = 0, and
where ZN depends on the prescription used for performing
the integration over the Feynman parameters (standard,
regular or infrared). We obtain for the infrared regularized
Z-factor at order p2

ZN = 1 +
e2

8π2 (CIR − CUV)

− g2
Am2

64π2F 2

(
HI

0 +
∆π

m2 HI
π

)
+ O(p3), (6.12)

with

HI
0 = r2(6 + 9CUV + 18 ln r),

HI
π = −(5 + 3CUV + 6 ln r); r = Mπ/m. (6.13)

Here, we have replaced the physical nucleon mass with its
chiral limit mass m – this is correct at the order of the
low-energy expansion we are working. We will do this in
all loop amplitudes considered below.

7 Evaluation of S-matrix elements

Here, we describe the evaluation of the S-matrix element
for the process π−p → π−p in this framework. The basic
element to be evaluated first is the truncated four-point
function

〈0|Tπ−(x1)π+(x2)Pα(x3)P̄ β(x4)|0〉 (7.1)

in d space-time dimensions. We take into account tree
graphs evaluated with Leff and one-loop graphs generated
by L(p2)

π , L(e2)
π and L(p)

N . The relevant diagrams are dis-
played in Figs. 2, 3, 8, 9 and 10. At the end, one multiplies
the result with the incoming and outgoing spinors for the
proton field, and incorporates the contribution from the
wave function renormalization constants for the pion and
nucleon field, determined in Sects. 5 and 6 in the stan-
dard manner. For general momenta of the incoming and
outgoing particles, the limit d → 4 does not exist due to
the infrared divergences which are generated by virtual

photons. As we discussed in Sect. 2, these divergences are
absent in the amplitude at threshold, provided that one
has removed the infrared-divergent Coulomb phase. Here,
we are interested in the infrared finite quantity TπN de-
fined in (2.10). The final result depends on the manner
the integration over the Feynman parameters is carried
out (standard, regular or infrared). Here, we work with
the prescription given in [18], which preserves chiral power
counting. In order to keep track of UV and IR divergences,
we found it convenient to evaluate the regular part of each
diagram separately, and subtract it from the same dia-
grams calculated in the standard manner. The procedure
was illustrated in Sects. 5 and 6 for the two-point func-
tions. It can straightforwardly be generalized to any of
the one-loop diagrams encountered here. The schematic
prescription is as follows:
(1) Graphs with no virtual nucleons need no infrared reg-
ularization – graphs with closed nucleon lines vanish in
infrared regularization.
(2) Graphs with pions (or photons or both) and nucleons
running in the loop, are evaluated in the following man-
ner. Heavy (nucleons) and light (pions and photons) lines
in the diagrams are combined together separately by us-
ing Feynman parameterization, as described in Sect. 6 of
[18]. The pertinent denominators are then combined with
a single Feynman parameter [x attached to the heavy and
(1− x) to the light line]. The infrared regularization con-
sists [18] in extending the region of integration over this
parameter, from [0, 1] to [0,∞].
(3) In order to distinguish between ultraviolet and infrared
divergences in graphs with a virtual photon, we evaluate
the infrared regularized part as the difference between the
standard and regular contribution. Symbolically,

M I =
∫ ∞

0
dxF = MS −MR,

MS =
∫ 1

0
dxF, MR = −

∫ ∞

1
dxF. (7.2)

Here, M I stands for the final result of the calculation of
any diagram in the infrared regularization, and F denotes
the corresponding integrand, where the integration over
the remaining Feynman parameters is implicit.
(4) One may clearly distinguish UV and IR divergences
in the one-loop diagrams which are contained in MS; see
Sects. 5 and 6. All divergences in MR at d→ 4 are declared
to be ultraviolet. At the end, all infrared divergences can-
cel in TπN . Ultraviolet divergences of the one-loop dia-
grams cancel against the divergent parts of the low-energy
constants, as a result of which the quantity TπN is IR and
UV finite.

The calculations may be simplified considerably if one
makes use of the fact that power counting is now pre-
served: Nucleon (meson) propagators count as p−1 (p−2).
The numerators can then be simplified by dropping terms
that generate contributions beyond the order p3 consid-
ered here. The procedure is described in [32]. Here, one
may use in addition that we work at threshold, where the
pion momenta are proportional to the nucleon momenta,
p′µ = pµ, q′µ = qµ = pµMπ/mp. Examples of such simpli-
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Fig. 9. The electromagnetic axial-type
diagrams
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Fig. 10. The strong one–loop diagrams
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fications are given in Sect. 8, where the triangle diagram
is evaluated.

We add a comment on the quark mass difference ∆ =
md −mu that occurs in the isospin violating part of the
threshold amplitude. It shows up in two ways: first,
through the neutron and proton masses in Feynman di-
agrams, and second, through vertices in the effective La-
grangian. Consider first the latter contributions. From
(4.1), it is explicitly seen that ∆ does not occur at order
p3, once the physical masses are used in the tree diagram,
Fig. 2b. Further, in (4.1), we may replace the neutron mass
by the proton mass at order p3 – ∆ still does not occur.
Next consider loop diagrams, which are evaluated with the
nucleon masses in the chiral limit, mp = mn = m, and are
of order p3 in the framework used here. Therefore, ∆ can-
not contribute. [Note that there is a difference between
the nucleon and pion masses in this respect: The elec-
tromagnetic contribution to the charged pion mass is of
the same order in the chiral counting as the leading term.
Therefore, it matters what pion is running in the loop.]
We conclude that the amplitude T m in (1.2) is of order
M2

π and therefore beyond the accuracy of the calculation
considered here.

8 The triangle diagram

In this section we investigate the infrared-divergent
Coulomb phase, as well as the singular terms in the real
part of the amplitude that behave like |p|−1 in the vicinity
of the physical threshold. At one loop, these factors arise
when one calculates radiative corrections to the strong
tree-level amplitudes which are obtained from the nucleon
Lagrangian L(p)

N . For illustration, we consider the strong
diagram emerging from the Weinberg–Tomozawa (WT)
vertex (Fig. 2a). The scattering amplitude corresponding
to this diagram is

TWT = ū(p′)
�q+ �q′

4F 2 u(p). (8.1)

The Coulomb singularities arise when one considers the
virtual photon corrections to this vertex with a particular
topology (v1), depicted in Fig. 8. There are two diagrams
of this type, with the photon emitted and absorbed either
in the initial or in the final state. The contributions of
these diagrams to the amplitude at threshold are the same,
so it suffices to consider one of them, and multiply the
result by 2. The total contribution of these diagrams is

Tv1 =
e2

2F 2

∫
ddk

(2π)di
ū(p′)(�q+ �q′− �k)

[−k2]

× (m+ �p+ �k)(2 �q− �k)u(p)
[m2 − (p + k)2][M2

π − (q − k)2]
. (8.2)

The numerator can be rewritten in the following manner:

ū(p′)(�q+ �q′− �k)(m+ �p+ �k)(2 �q− �k)u(p)

= ū(p′)
{

(2(�q+ �q′)− �k)[m2 − (p + k)2]

+4 �q′(m+ �p) �q + 4 �q′ �k �q
}

u(p). (8.3)

According to the discussion in Sect. 7, we drop here the
last term that does not contribute to the amplitude at
O(e2p). Then, after some algebra, one arrives at the fol-
lowing expression for the sum of contributions of tree
(WT) and one-loop (v1) diagrams to the invariant am-
plitude D given by (2.7):

DWT + Dv1 =
s− u

8mF 2

{
1 + e2

[
J1

2M2
π

+ 4J2 + 4(s−m2)Jγ(s)
]}

+ · · · , (8.4)

where the ellipsis stands for higher-order terms in the chi-
ral expansion. The scalar integrals that enter the expres-
sion (8.4), are given by

J1 =
∫

ddk

(2π)di
1

M2
π − k2 =

M2
π

16π2 Cπ
UV,

J2 =
∫

ddk

(2π)di
1

[−k2][M2
π − (q − k)2]

= − 1
16π2 (Cπ

UV − 1),

Jγ(s) =
∫

ddk

(2π)di

× 1
[−k2][m2 − (p + k)2][M2

π − (q − k)2]
. (8.5)

The representation (8.4) turns out to be very convenient
to study the threshold behavior of the amplitude. The rea-
son for this is that the integral Jγ(s) enters here with a
coefficient which counts at O(e2p2), so the regular part
of Jγ(s), which is a polynomial in the external momenta
and masses, cannot contribute at O(e2p) to the amplitude
D. Consequently, one may use the standard dimensional
regularization instead of infrared regularization for calcu-
lating this integral.

Introducing Feynman parameters, the momentum in-
tegration in Jγ(s) can be explicitly done:

Jγ(s) =
Γ

(
3− d

2

)

(4π)d/2

∫ 1

0
dα1dα2dα3

× δ

(
1−

3∑
i=1

αi

)
[J(α)]d/2−3,

J(α) = (α1 + α2)(α1m
2 + α2M

2
π)− α1α2s. (8.6)

One may single out the infrared divergence at d = 4 by
rescaling the Feynman parameters according to α1,2 →
(1−α3)α1,2 – the integration over the parameter α3 then
factorizes, and we arrive at the following expression:

Jγ(s) =
1

32π2m2

{
(CIR + 1)

∫ 1

0

dα1

R
+
∫ 1

0

dα1 lnR

R

}
,

R = α1 + (1− α1)r2 − α1(1− α1)s̄, s̄ =
s

m2 . (8.7)
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Using the formulae (C.2) and (C.4) from Appendix C, and
expanding near threshold, for the sum DWT + Dv1 we
finally obtain

DWT + Dv1 =
Mπ

2F 2

{
1 + 2iαθC(|p|) +

παµc

|p|

+
α

πr
I1
V + O(|p|)

}
,

I1
V = −r

8
(7CUV + 8CIR + 30 ln r + 16) + O(r2);

r =
Mπ

m
, (8.8)

where the Coulomb phase θC(|p|) is given in (2.9).
From (8.8) it is evident, that the combination

exp−2iαθC(|p|)(DWT + Dv1)

[cf. with (2.10)] does not contain the Coulomb phase at
O(α). Further, dropping the term proportional to |p|−1,
one may read off the corresponding contribution I1

V to
the threshold amplitude TπN ; see Table 6, entry (v1). Fi-
nally, we note that in the amplitude there is no term that
behaves like ln |p| near threshold – the coefficient B2 in
(2.10) first appears at two-loop order [11].

9 The threshold amplitude at order p3

We do not provide any further details of the calculations
that can be done along the lines illustrated in previous sec-
tions. In this section, we combine the various pieces and
present the final expression for the threshold scattering
amplitude TπN . This quantity is given by a sum of several
contributions: to the contribution of Born diagrams (4.1),
multiplied by the pion and nucleon wave function renor-
malization factors ((5.7) and (6.12), respectively), one has
to add the contributions from vector (Fig. 8), axial (Fig. 9)
and strong (Fig. 10) loops, as well as the counterterm con-
tribution T ct displayed in (4.2),

TπN = ZπZNT B + T V + T A + T S + T ct, (9.1)

where

T V =
e2m

8π2F 2

6∑
i=1

Ii
V, T A =

e2g2
Am

32π2F 2

9∑
i=1

Ii
A,

T S =
m3

π2F 4

24∑
i=1

(
Ii
0 +

∆π

m2 Ii
π

)
. (9.2)

The quantities Ii
V, Ii

A, Ii
0 and Ii

π, that correspond to the
contributions from individual vector, axial and strong dia-
grams, are listed in Tables 6, 7 and 8 in Appendix D. Not
all of the diagrams that are shown in Figs. 8, 9 and 10
do contribute to the threshold amplitude at O(p3). The
diagram (s24) in Fig. 10 e.g. vanishes trivially after the
momentum integration. Moreover, there are two reasons

for which some of the diagrams that are formally O(p3) in
chiral counting, start to contribute at higher order:
(1) In the one-particle reducible diagrams Fig. 9: (a1),
(a2), (a5), and Fig. 10: (s1), (s2), (s5), (s6), (s7), (s8), (s9),
(s17), the neutron propagator is followed by �qπγ5u(p) (ini-
tial state), or preceded by ū(p′) � qπγ5 (final state), where
qπ stands either for q or for q′. Formally, the combina-
tion [� qπγ5× propagator] is of chiral order zero. However,
putting γ5 through the nucleon propagator changes the
sign of the nucleon momentum, and the whole expression
starts to contribute at O(p).
(2) Doing the simplification of numerators in a manner
described in Sects. 7 and 8 for the diagrams (a3), (a6),
(a7) and (s3), (s4), (s10), (s11), it is easy to observe that
the leading-order contributions in the numerators vanish
at threshold.

For this reason, in Tables 6, 7 and 8 we do not display
the contributions from the above-mentioned diagrams.

Adding all pieces together in the amplitude, we have
checked that all UV divergences, as expected, cancel with
the divergent parts of the LECs, whereas the IR diver-
gences cancel among themselves. The final result is thus
given in terms of renormalized LECs lri , kr

i , dr
i , gr

i . Further,
we split the threshold amplitude in its isospin-conserving
and isospin-violating parts according to (2.3). The expres-
sions for these parts are given by (for convenience, we use
here the physical proton mass mp and the physical pion
decay constant Fπ):

T 0
πN =

Mπ

2F 2
π

− g2
AM2

π

4mpF 2
π

+
2M2

π

F 2
π

(−2c1 + c2 + c3)

+
g2
AM3

π

8m2
pF

2
π

+
M3

π

16π2F 4
π

(
1 +

3πg2
A

4
− 2 ln

Mπ

µ

)

+
M3

π

F 4
π

lr4 +
4M3

π

F 2
π

(dr
1 + dr

2 + dr
3 + 2dr

5) + O(p4), (9.3)

δT = δT2 + δT3 + O(p4),
δT3 = δT str

3 + δT em
3 + δT ct

3 , (9.4)

δT2 =
4∆π

F 2
π

c1 −
e2

2
(4f1 + f2),

δT str
3 = − Mπ∆π

32π2F 4
π

(
3 +

33πg2
A

4
+ 2 ln

Mπ

µ

)
,

δT em
3 = −e2Mπg2

A

32π2F 2
π

(
2 + π + 8 ln 2 + 12 ln

Mπ

µ

)
,

δT ct
3 = −8Mπ∆π

F 2
π

dr
5

+2e2Mπ

(
gr
6 + gr

8 −
5

9F 2
π

(kr
1 + kr

2)
)

, (9.5)

where δT2, δT3 are of order p2 and p3, respectively. From
the above equations one may easily check that the ampli-
tude does not depend on the scale µ. Note that here we
have replaced the pion decay constant in the chiral limit
F by the physical decay constant Fπ,

Fπ = F

{
1 +

M2
π

F 2

(
lr4 −

1
8π2 ln

Mπ

µ

)
+ O(M4

π)
}

. (9.6)
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This is the reason that lr4 occurs in (9.3).
Equations (9.4) and (9.5) represent our main result.

This is a complete calculation of the isospin-breaking part
of the threshold scattering amplitude at O(p3) in rela-
tivistic baryon ChPT, by using the infrared regularization
method of [18,32]. The isospin-conserving part of the am-
plitude, given in (9.3), agrees with the one displayed in
Appendix A of [33]. A calculation of isospin-breaking ef-
fects at order p3 has been performed by the same authors
in [17]. Since they do not provide a complete analytic ex-
pression of the scattering amplitude, it is not possible to
compare the results.

10 The size of the low-energy constants

In this section, we discuss the size of the low-energy con-
stants that occur in the isospin-breaking amplitude δT .
The amplitude δT2(δT3) contains 4f1 + f2, c1 (kr

1 + kr
2,

gr
6 +gr

8, dr
5). We start the discussion with δT2 and consider

the constant c1. It has been determined from threshold
data [34] in [32]. The uncertainty in c1 may be obtained
from (20.2) in [32], using Höhler’s values [14] for the un-
certainties in the threshold parameters and in the coupling
constant gπN . We find6

c1 = −(0.93± 0.07) GeV−1. (10.1)

For a comparison with other determinations of c1, see Ta-
ble 1 in [36].

Next, consider f1 and f2 that occur in the order e2

pion–nucleon Lagrangian. Up to terms of order π4, that
Lagrangian is

L(e2)
N = F 2Ψ̄OΨ,

O =
e2

2
[(f1 + f3) · 12 + f2τ3]

− 2f1e
2

F 2 π+π− · 12 + ef2Q̄ + · · · , (10.2)

Q̄ =
e

4F 2

(
−2π+π− √2π0π+
√

2π0π− 2π+π−

)
; 12 = diag(1, 1),

where τ3 denotes the Pauli matrix. From this decompo-
sition, it is seen that f1 occurs in the chiral expansion
of the nucleon mass and in elastic pion–nucleon scatter-
ing π±p(n) → π±p(n). The electromagnetic part of the
proton–neutron mass difference is given by the constant
f2 at leading order in the chiral expansion,

−e2F 2f2 = (mp −mn)em. (10.3)

Here, we disagree with the result (12) of [19] by a factor
of 2. Numerically, we use (mp−mn)em = (0.76±0.3) MeV
[37], or

f2 = −(0.97± 0.38) GeV−1. (10.4)

6 We use for Mπ, mp, . . . in the following the values quoted
in [35], in particular Fπ = 92.4 MeV, |gA| = 1.267

We are now left with the determination of f1. The sum
mp + mn contains the combination e2(f1 + f3) – the con-
stants f1 and f3 can therefore not be disentangled from
information on the nucleon masses. We may consider mp+
mn as a quantity that fixes f3, once f1 is known. There-
fore, elastic pion–nucleon scattering is the only realisti-
cally accessible source of information on f1. In principle,
one may consider combinations of amplitudes that van-
ish in the isospin symmetry limit, and determine f1 from
those. The combination

X = Tπ+p→π+p + Tπ−p→π−p − 2Tπ0p→π0p (10.5)

has this property. The tree graphs of X start at order p2

and contain f1 – that one may try to determine hence from
here. Of course, one is faced with a problem of accuracy: in
order to determine X, one needs to consider the difference
of two large numbers, quite aside from the fact that the
cross section π0p → π0p is not known experimentally. It
remains to be seen whether a combination of experimental
data and lattice calculations could resolve this problem
also in practice.

In the absence of precise experimental information on
f1, we can
(i) rely on order-of-magnitude estimates, or
(ii) consider model calculations. As to order-of-magnitude
estimates, we follow Fettes and Meißner [38] and write

F 2e2|f1| �
α

2π
mp,

or

|f1| � 1.4 GeV−1, (10.6)

because f1 is due to a genuine photon loop at the quark
level (we divide by 2π rather than by 4π [38] to be on the
conservative side). This estimate also confirms the expec-
tation [13] that |f1| has the same size as |f2|, see (10.4). As
to model calculations, we refer the reader to [39], where
c1 and f1,2,3 have been determined in a quark model, with
the result

c1 = −1.2 GeV−1, (10.7)
F 2(f1, f2, f3) = (−19.5± 1.6,−8.7± 0.7, 18± 1.5) MeV.

Finally, we come to the low-energy constants that occur
in the next-to-leading-order amplitude δT3. The contribu-
tions of the relevant LECs to δε is suppressed by one power
of the pion mass with respect to the ones from c1, f1 and
f2 that occur at leading order – therefore, we expect their
effect to be substantially smaller, because they represent
polynomial parts of the amplitudes, not chiral singular
pieces. The value for dr

5 is given in Table 1 of [32] (we have
chosen the entry with the largest uncertainty assigned):

16M2
πdr

5(µ) = 0.04± 0.06− 2M2
π

F 2 lr4(µ), µ = 1 GeV.

(10.8)

Here, we have translated the dr
5 from [32] into the present

scheme according to (B.14). Below, we will use lr4(1 GeV)
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Table 1. Individual contributions to δε. K denotes the bound-
state correction in (2.4). See text for details

source δε × 102

δT2|f1=0 −5.5

f1 ±2.8

µ = 500 MeV µ = 1 GeV

δT str
3 −3.5 −3.4

δT em
3 0.4 1.1

dr
5 −0.3 ± 0.3 −0.2 ± 0.3

kr
1 + kr

2 ±0.2
gr
6 + gr

8 ±0.4

K 0.66

vac. pol. [20] 0.48

= 2.9·10−3 [5]. For kr
1+kr

2, we invoke standard dimensional
arguments for an estimate of its size, |kr

i | � 1/(16π2), and
apply the same rule to gr

6 + gr
8,

|kr
1 + kr

2| �
2

16π2 , |gr
6 + gr

8| �
2

16π2F 2 . (10.9)

[In [17], gr
6 + gr

8 was estimated from an analysis of pion–
nucleon scattering at low energies. However, in that ref-
erence, renormalization was treated in a manner differ-
ent from the framework used here, and it is not clear to
us how we can compare the couplings determined there
with the ones used here; see Appendix B.] As a check of
this procedure, we apply the same estimate to dr

5, namely
|dr

5| � 1/(16π2F 2). Comparing with (10.8), we see that
this guess is a rather generous one.

11 Ground-state energy-level shift

We are now ready to provide numerical values for the cor-
rection δε in the strong energy-level shift δε according to
(1.3) and (2.4). In addition to the LECs, we need the value
for the scattering lengths a±

0+ . We take from [4]

a+
0+ + a−

0+ = 0.0883M−1
π . (11.1)

11.1 The correction δε

The contribution from the leading term δT2 was already
determined in [13]. This contribution contains the three
LECs f1, f2 and c1. For f1, the estimate |f1| < |f2| was
used in [13]. The corresponding contribution to δε is ±1.9 ·
10−2. Here, we use the estimate (10.6), which is slightly
more conservative, and display in Table 1 the contribution
due to δT2|f1=0, f1 and to the bound-state correction K.
We will use below this information to estimate the uncer-
tainty in the final result.

The next order in the chiral expansion of δε is obtained
from the second term in (2.4), evaluated with δT = δT3.

We split this term further into contributions that stem
from the photon loop, strong loops and counterterms, as
indicated in (9.4). Note that the individual terms are scale
dependent, whereas the full result is not, of course. In the
table, we present the values obtained from the strong loops
and photon loops at two values of the scale, µ = 500 MeV
and µ = 1 GeV. The contributions from the strong loops
are substantial and of negative sign. This large contribu-
tion is mainly due to the three graphs Fig. 10 (s19), (s21)
and (s22), which add

δT str
3

∣∣∣∣
(s19),(s21),(s22)

= − 33πg2
A

128π2F 4
π

Mπ∆π, (11.2)

or δε = −3.5 · 10−2. We find it amusing to see that it
is the triangle graph that generates these large contribu-
tions. [In the self-energy-type graph (s19), one has to ex-
pand the neutral pion mass in the propagator around the
charged pion mass. This expansion generates a triangle-
type graph.] A graph with triangle topology was found to
generate a large contribution to the photoproduction of
neutral pions a long time ago [40]. In addition, that con-
tribution is responsible for the breakdown of a so-called
low-energy theorem in that process. Further, this graph
also plays an important role in the low-energy analysis of
pion–nucleon scattering [18,32].

One might worry that the next-to-leading-order cor-
rection could be large as compared to the leading order,
and jeopardize the chiral expansion also in the isospin-
breaking sector. However, as we already noticed, the rea-
son for this large correction is well understood – it is due
to the triangle graphs. We do therefore not consider this
to be a problem.

Finally, we display in the table the contributions from
the counterterms in δT ct, using the estimates displayed
above. It is seen that the effect of the LECs at this order is
indeed suppressed with respect to the leading-order ones.
We then add the central values at the scale µ = Mρ, with
f1 = gr

i = kr
i = 0. For the uncertainty, we add in quadra-

ture the contributions from f1, δf2, δc1, kr
1 + kr

2, g
r
6 + gr

8
and from δdr

5. In this manner, we obtain

δε = (−7.2± 2.9) · 10−2. (11.3)

This is our final result for the correction δε. The uncer-
tainty in (11.3) is dominated by the largely unknown cou-
pling f1, as is seen from the third row in Table 1. It does
not take into account contributions from order p4 in the
chiral expansion of the isospin-breaking amplitude δT .

We note that our numerical results for the isospin-
breaking corrections in the amplitude cannot be directly
confronted with those of [17], which refer to different phys-
ical quantities. Numerical values for the isospin-breaking
effects given in [17] are typically of order ∼ 1–2%.

11.2 Comparison with model calculations

Here we compare our result with the potential model cal-
culation performed in [6], and with the evaluation [39] of
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Fig. 11. An example of a QCD diagram, which is not taken
into account in the potential model of [6]. Wiggly lines denote
gluons

the couplings at leading order in a quark model, (10.7).
We start with the latter. The central values in (10.7) lead7

– adding the bound-state correction K – to δε = −2 ·10−2

at order p2. Taken at face value, this determines the cou-
pling f1 in our calculation: f1 = −1.43 GeV−1, in agree-
ment with the estimate (10.6). This leads finally to δε =
−4.3 · 10−2 at order p3.

We now come to the potential model discussed in [6],
which predicts

δε = (−2.1± 0.5) · 10−2. (11.4)

We have the following comments.
(1) The result (11.4) looks considerably more precise than
the effective field theory evaluation. There are no unknown
LECs occurring in the framework used in [6].
(2) The leading terms in the effective field theory frame-
work – that lead to the large uncertainty in (11.3) – are
on the other hand not all incorporated [13] in (11.4). An
example of a QCD diagram, whose contribution is com-
pletely omitted, is shown in Fig. 11. In the potential model
[6], it can emerge neither from the nγ channel (there is no
intermediate state with a neutron in Fig. 11), nor from
the Coulomb rescattering (the photon in Fig. 11 is at-
tached only to the proton). At the level of the effective
Lagrangians, such contributions are encoded in the low-
energy constants f1 and f2.
(3) The potential model used in [6] takes into account
terms at order p3, p4, · · · in the language of the low-energy
expansion. We are not aware of a proof that it includes all
of them. On the other hand, one can construct potentials
that certainly do [12]. Unfortunately, these potentials do
not determine the LECs, because the LECs are used in-
stead to pin down the potentials.
(4) The observation that potential models do not, in gen-
eral, include all effects of QCD + QED is not new. Aside
from the hadronic atom case [8–11], we mention here the
investigation of Fettes and Meißner in πN scattering [17].
These authors pointed out that for graphs like the one dis-
played in Fig. 8 the (v6) generate a very large effect, that
has not been fully accounted for in existing phase shift
analyses.
(5) We conclude that the uncertainty in (11.4) is underes-
timated – it does not reflect the systematic errors inherent
in the method.

7 In [39] slightly different values for the pion masses were
used. The result quoted there for the correction to the energy
shift corresponds to those values. We thank V. Lyubovitskij
for correspondence

12 Summary and conclusions

(1) The aim of the present work was to evaluate the
ground-state energy of pionic hydrogen in the framework
of QCD + QED. We have performed the calculation at
next-to-leading order in the low-energy expansion, relying
on the method of effective field theories. According to the
investigations of [13], all that is needed for this purpose
is an evaluation of the elastic πN scattering amplitude at
order p3.
(2) In order to achieve this goal, we have invoked rela-
tivistic baryon ChPT in manifestly Lorentz invariant form
[18], and generalized the procedure to allow for virtual
photons. To have a powerful check on our calculation, we
have in addition performed a heat-kernel evaluation of the
ultraviolet divergences at order p3, using a consistent set
of low-energy meson–meson and meson–nucleon effective
Lagrangians that are used in the calculation of the πN
scattering amplitudes at O(p3).
(3) We have then calculated the π−p elastic scattering am-
plitude at threshold – in the presence of isospin breaking
– at O(p3) in the low-energy expansion. The result con-
tains unitarity corrections and counterterm contributions
generated by LECs. The quark mass difference md −mu

only enters at order p4, which is not considered here.
(4) At leading order, the contribution to the energy shift is
generated [13] by three counterterms f1, f2 and c1.
Whereas the latter two can be determined from other
sources, the size of f1 needs yet to be determined in a
model-independent manner.
(5) The loop contributions, which contain mass splitting
effects from diagrams with strong loops, turn out to be siz-
able. Graphs with a particular topology (triangle graphs)
turn out to be particularly important – their contribution
to the energy shift indeed is large and negative, a sizable
fraction of the leading-order term. Graphs with the same
topology play an important role e.g. in photoproduction
of neutral pions [40].
(6) The LECs at next-to-leading order are suppressed by
one power of Mπ and thus expected to have a small ef-
fect on the energy shift. This expectation turns out to
be correct for one of the couplings that has recently been
determined [32] in a comprehensive analysis of πN scat-
tering. Estimating the size of the remaining terms with
dimensional arguments, it indeed turns out that their con-
tribution is about an order of magnitude smaller than the
leading-order result. The final result is given in (11.3).
(7) Whereas it is true that we cannot yet provide a reliable
error estimate of the final result, because f1 is not known
with sufficient accuracy, it is also true that the calcula-
tion is systematic: The result (9.3)–(9.5) for the threshold
amplitude allows one to evaluate the energy-level shift (at
this order in the low-energy expansion) from first princi-
ples, once one has worked out a reliable estimate for the
LECs.
(8) A precise determination of the scattering lengths a+

0+ +
a−
0+ from a precise measurement of the ground-state

energy-level shift of pionic hydrogen has to await a more
precise determination of f1 in our opinion. This fact is
hidden in the potential model calculation [6], that quotes
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a very small uncertainty. As we outlined above, this re-
sult does not reflect all systematic uncertainties hidden in
this approach: potentials in general do not incorporate the
constraints from QCD + QED, unless one imposes these
constraints on them [12]. A method different from effec-
tive field theories to perform this matching is not in sight.
We conclude that one is bound to know the LECs, quite
independently of the framework used.
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Appendix

A Meson–meson
and meson–nucleon Lagrangians

In this appendix, we give the operator basis and the diver-
gent parts of the LECs of the meson–meson and meson–
nucleon effective chiral Lagrangians, that were used in the
calculations. We set the charge matrices to their physical,
constant values,

Q =
e

3
diag(2,−1), Q = e diag(1, 0), (A.1)

and use the following notation:

[Dµ, X] .= ∂µX + [Γµ, X],
Ψ̄(O + h.c.)Ψ .= Ψ̄OΨ + h.c.,
Ψ̄ i(O − h.c.)Ψ .= i(Ψ̄OΨ − h.c.), (A.2)

where X denotes any bosonic operator, and Ψ is a fermi-
onic field. We use the notation of Bjorken–Drell [21] for
the Dirac matrices.

B Divergent counterterms

It is common and useful in ChPT to identify the diver-
gent parts of counterterms not just within a calculation
of a particular process, but rather in full generality, using
the background field and heat-kernel methods. One of the
benefits of such an approach is that it provides a nontriv-
ial check for any particular calculation – the loop infinities
must be cancelled by the a priori known counterterms.

In spite of the fact that the method of Ball [41] can
accommodate a large variety of regularizations, including

Table 2. Operator basis and the divergent parts of the low-
energy couplings in the O(p4) meson Lagrangian [23] and in
the O(e2p2) meson Lagrangian [24]. The terms that do not
contain pion fields, and terms of order e4 are not displayed

i O
(p4)
i γi

1 1
4 〈dµU†dµU〉2 1

3

2 1
4 〈dµU†dνU〉〈dµU†dνU〉 2

3

3 1
16 〈χ†U + U†χ〉2 − 1

2

4 1
4 〈dµU†dµχ + dµχ†dµU〉 2

5 〈RµνULµνU†〉 − 1
6

6 i
2 〈RµνdµUdνU† − 1

3

+LµνdµU†dνU〉

7 − 1
16 〈χ†U − U†χ〉2 0

i O
(e2p2)
i σi

1 〈dµU†dµU〉〈Q2〉 − 27
20 − 1

5Z

2 〈dµU†dµU〉〈QUQU†〉 2Z

3 〈dµU†QU〉〈dµU†QU〉 − 3
4

+〈dµUQU†〉〈dµUQU†〉

4 〈dµU†QU〉〈dµUQU†〉 2Z

5 〈χ†U + U†χ〉〈Q2〉 − 1
4 − 1

5Z

6 〈χ†U + U†χ〉〈QUQU†〉 1
4 + 2Z

7 〈(χU† + Uχ†)Q 0

+(χ†U + U†χ)Q〉〈Q〉

8 〈(χU† − Uχ†)QUQU† 1
8 − Z

+(χ†U − U†χ)QU†QU〉

9 〈dµU†[Cµ
R, Q]U + dµU [Cµ

L , Q]U†〉 1
4

10 〈Cµ
RUCLµU†〉 0

Table 3. Operator basis in the O(p2) pion–nucleon Lagrangian
[25], and in the O(e2) pion–nucleon Lagrangian [27]

i O
(p2)
i O

(e2)
i

1 〈χ+〉 〈Q̂2
+ − Q2

−〉

2 − 1
4m2 〈uµuν〉(DµDν + h.c.) 〈Q+〉Q̂+

3 1
2 〈uµuµ〉 〈Q̂2

+ + Q2
−〉

4 i
4σµν [uµ, uν ]

5 χ̂+

6 1
8m

σµνF+
µν

7 1
8m

σµν〈F+
µν〉
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Table 4. Operator basis and the divergent parts of the low-
energy couplings in the third-order strong pion–nucleon La-
grangian. The operator basis is the same as the one used in
[25] for the relativistic operators. The divergent parts are dif-
ferent from [25], since we use the EOM to eliminate additional
operators that arise in the HBChPT formulation, and work
with a different basis in the mesonic sector. For comparison
with [26], see Appendix B

i O
(p3)
i βi

1 − 1
2m

([uµ, [Dν , uµ]]Dν + h.c.) − 1
6g4

A

2 − 1
2m

([uµ, [Dµ, uν ]]Dν + h.c.) − 1
12 − 5

12g2
A

3 1
12m3 ([uµ, [Dν , uλ]] 1

2 + 1
6g4

A

×(DµDνDλ + sym) + h.c.)

4 − 1
2m

(εµναβ〈uµuνuα〉Dβ + h.c.) 0

5 i
2m

([χ−, uµ]Dµ − h.c.) − 5
24 + 5

24g2
A

6 i
2m

([Dµ, F̂+
µν ]Dν − h.c.) − 1

6 − 5
6g2

A

7 i
2m

([Dµ, 〈F+
µν〉]Dν − h.c.) 0

8 i
2m

(εµναβ〈F̂+
µνuα〉Dβ − h.c.) 0

9 i
2m

(εµναβ〈F+
µν〉uαDβ − h.c.) 0

10 1
2γµγ5uµ〈uνuν〉 1

2gA + 5
2g3

A

+2g5
A

11 1
2γµγ5u

ν〈uµuν〉 1
2gA − 3

2g3
A

− 2
3g5

A

12 − 1
8m2 (γµγ5uµ〈uνuλ〉 −2gA − g3

A

×{Dν , Dλ} + h.c.) −2g5
A

13 − 1
8m2 (γµγ5uλ〈uµuν〉 g3

A + 2
3g5

A

×{Dν , Dλ} + h.c.)

14 i
4m

(σµν〈uν [Dλ, uµ]〉Dλ − h.c.) 1
3g4

A

15 i
4m

(σµν〈uµ[Dν , uλ]〉Dλ − h.c.) 0

16 1
2γµγ5〈χ+〉uµ

1
2gA + g3

A

17 1
2γµγ5〈χ+uµ〉 0

18 i
2γµγ5[Dµ, χ−] gA

19 i
2γµγ5[Dµ, 〈χ−〉] − 1

2gA

20 − i
8m2 (γµγ5[F̂+

µν , uλ] gA + g3
A

×{Dν , Dλ} − h.c.)

21 i
2γµγ5[F̂+

µν , uν ] −g3
A

22 1
2γµγ5[Dν , F −

µν ] 0

23 1
2εµναβγµγ5〈uνF −

αβ〉 0

the dimensional one, it is not straightforward to extend
it to cover also the Becher–Leutwyler infrared regulariza-
tion [18,32]. One may, however, utilize the fact that diver-
gences encountered in the infrared regularization are the
same as those occurring in heavy baryon ChPT [18,32].

Table 5. Operator basis and the divergent parts of the
low-energy couplings in the third-order electromagnetic pion–
nucleon Lagrangian. The operator basis is the same as the one
used in [28] for the relativistic operators (modulo signs and fac-
tors of i), whereas the divergent parts are different from those
displayed in [28]; see Appendix B

i O
(e2p)
i ηi

1 1
2 〈Q2

+ − Q2
−〉γµγ5uµ gA(2 + g2

A

+4Z + 12g2
AZ)

2 1
2 〈Q+〉2γµγ5uµ − 1

2gA(3 + 2g2
A

+4Z + 12g2
AZ)

3 1
2γµγ5〈Q+〉〈Q+uµ〉 1

2gA(1 − 4Z

+4g2
AZ)

4 1
2γµγ5Q+〈Q+uµ〉 gA(−1 + 4Z

−4g2
AZ)

5 1
2γµγ5Q−〈Q−uµ〉 gA(3 − 2g2

A

−4Z + 4g2
AZ)

6 i
2m

〈Q+〉〈Q−uµ〉Dµ + h.c. 3
4 − 3g2

A

− 1
3Z − 5

3g2
AZ

7 i
2m

Q−〈Q+uµ〉Dµ + h.c. − 9
2 − 2

3Z

− 10
3 g2

AZ

8 i
2m

Q+〈Q−uµ〉Dµ + h.c. − 3
2 + 6g2

A

+ 2
3Z + 10

3 g2
AZ

9 − 1
2m

[Q+, c+
µ ]Dµ + h.c. −2

10 − 1
2m

[Q−, c−
µ ]Dµ + h.c. − 1

2 + 9
2g2

A

11 i
2γµγ5[Q+, c−

µ ] −gA

12 i
2γµγ5[Q−, c+

µ ] gA

In HBChPT the baryon field is split into velocity-
dependent “heavy” and “light” components8

Nv (x) = eimv·xP+
v Ψ (x) ,

Hv (x) = eimv·xP−
v Ψ (x) ,

P±
v =

1
2

(1± γµvµ) ; v2 = 1, (B.1)

and the heavy component Hv (x) is integrated out. The
propagator of the remaining light component is a homoge-
neous function of the residual momentum kµ = pµ−mvµ,
leading to a consistent chiral power counting in dimen-
sionally regularized HBChPT.

The heat-kernel method in HBChPT leads to a lengthy
and cumbersome calculation. The amount of work
required can be reduced significantly by introduction of
the so-called super-heat-kernel method in recent work of
Neufeld et al. [29,30]. Following closely the procedure of
Neufeld, we worked out the complete divergence structure

8 We follow the tradition of denoting the velocity by the
same symbol vµ which was used for the external vector field.
The meaning should always be clear from the context
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of the one-loop generating functional corresponding to the
Lagrangian:

L = L(p)
HB + L(p2)

π + L(e2)
π + Lγ , (B.2)

where

L(p)
HB = Nv (ivµDµ + gASµuµ) Nv (B.3)

is the HB projection of L(p)
N , with Sµ = (i/2)γ5σ

µνvν .
The starting point of the background field machinery

is a decomposition of fields in the Lagrangian into back-
ground fields and fluctuations. Here one has to distinguish
between two different elements of the chiral coset space
SU (2)L × SU (2)R / SU (2)V, namely uL and uR, occur-
ring in the definitions of various fields appearing in chiral
invariant Lagrangians,

U = uRu†
L,

uµ = i
[
u†

R (∂µ − iRµ) uR − u†
L (∂µ − iLµ) uL

]
,

Γµ =
1
2

[
u†

R (∂µ − iRµ) uR + u†
L (∂µ − iLµ) uL

]
. (B.4)

Decomposing the fields into classical background fields
and fluctuations

uR = ucleiξ/2F , uL = u†
cle

−iξ/2F ,

N = Ncl + η, Aµ = Aµ
cl + εµ, (B.5)

and switching to the Euclidean formulation of the theory,
which is more convenient when dealing with photons, one
first merges the bosonic fields into 7-component objects ζ̃,

ζ̃T =
(
ξ1, ξ2, ξ3, ε0, ε1, ε2, ε3

)
, ξ =

∑
ξiτ i. (B.6)

At the next step, one expands the action up to second
order in the fluctuations ζ̃ and η (Euclidean analog of the
formula (3.1) in [30]). Once the explicit form of the fluc-
tuations is worked out, one can use (the Euclidean version
of) Neufeld’s master equations (3.19)–(3.21); see [30]. At
the end, the results are transformed back to Minkowski
space.

After some straightforward, yet tedious, algebra one
finds the divergent counterterm Lagrangian in a “raw”
form,

Lraw = Lraw
π + Lraw

πγ + Lraw
N + Lraw

Nγ , (B.7)

Lraw
π =

1
16π2 (d− 4)

{
1
12
〈u · u〉2 +

1
6
〈uµuν〉 〈uµuν〉

+
3
32
〈χ+〉2 −

1
12

〈
F̂+µνF̂µν

+

〉

− i
12

〈
[uµ, uν ] F̂µν

+

〉
+

1
4
〈u · u〉 〈χ+〉

}
, (B.8)

Lraw
πγ =

F 2

16π2 (d− 4)

{
−27 + 4Z

20
〈u · u〉

〈
Q2〉

+ 2Z 〈u · u〉
〈
Q2

+ −Q2
−
〉

+
3
2

(
〈uµQ+〉2 + 〈uµQ−〉2

)

+ 2Z
(
〈uµQ+〉2 − 〈uµQ−〉2

)

− 5 + 4Z

20
〈χ+〉

〈
Q2〉 +

1 + 8Z

4
〈χ+〉

〈
Q2

+ −Q2
−
〉

− i
2
〈
uµ

[
Cµ

−,Q+
]
+ uµ

[
Cµ
+,Q−

]〉

+
75− 80Z + 168Z2

50
F 2 〈Q2〉2

− 15 + 2Z + 12Z2

5
F 2 〈Q2

+ −Q2
−
〉 〈
Q2〉

+
3 + 4Z + 24Z2

2
F 2 〈Q2

+ −Q2
−
〉2

+
i
2
〈[Dµ, uµ] [Q−,Q+]〉

}
, (B.9)

Lraw
N =

1
16π2 (d− 4)

1
F 2 N̄

{
g4
A

8
[uµ, [iv ·D, uµ]]

− 1 + 5g2
A

12
[uµ, [iDµ, v · u]]

+
4− g4

A

8
[v · u, [iv ·D, v · u]]

+
4gA − g5

A

8
S · u 〈u · u〉

+
6gA − 6g3

A + g5
A

12
uµ 〈uµS · u〉

+
−8gA + g5

A

8
S · u

〈
(v · u)2

〉

− g5
A

12
v · u 〈v · uS · u〉 +

4gA − g3
A

8
S · u 〈χ+〉

− 1 + 5g2
A

6

[
Dµ, F̂µν

+

]
vν +gAiSµvν

[
F̂µν

+ , v · u
]

− 4g3
A + 3g5

A

16
ivλελµνρ 〈uµuνuρ〉

− g4
A

4
[Sµ, Sν ] 〈uµ [iv ·D, uν ]〉

− 1 + 5g2
A

12
[[iDµ, uµ] , v · u]

− g3
A

4
vλελµνρ

〈
F̂+µνuρ

〉
−3g2

Ai (v ·D)3

+ g3
Av · ←−DS · uv · −→D

− 12g2
A + 9g4

A

16
(〈u · u〉 iv ·D + h.c.)

+
8 + 9g4

A

16

(〈
(v · u)2

〉
iv ·D + h.c.

)

+
g3
A

3
([v ·D, S · u] v ·D + h.c.)

− 9g2
A

16
(〈χ+〉 iv ·D + h.c.)

+
4g2

A + g4
A

4
([Sµ, Sν ]uµuν iv ·D + h.c.)

+ g2
A([Sµ, Sν ]F̂+µνv ·D + h.c.)

}
N, (B.10)
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Lraw
Nγ =

1
16π2 (d− 4)

N̄
{gA

2
(
8Z − g2

A
) 〈

Q2
+ −Q2

−
〉
S · u

− gA

2
(
4 + 4Z − g2

A
)
〈Q+〉2 S · u

− 2gA
(
1 + Z − Zg2

A
)
〈Q+S · u〉 〈Q+〉

+ 4ZgA
(
1− g2

A
)
〈Q+S · u〉Q+

+ 2gA
(
1− g2

A
)
(1− 2Z) 〈Q−S · u〉Q−

+
(
1− 3g2

A
)
〈Q−v · u〉 〈Q+〉 − 4 〈Q+v · u〉Q−

− 2
(
1− 3g2

A
)
〈Q−v · u〉Q+ − 2 [Q+, iv · c+]

− 1
2
(
1− 9g2

A
)
[Q−, iv · c−]

− 2 (〈Q+〉Q+iv ·D + h.c.)

− 1
4
(
2 + 3g2

A + 24Zg2
A
) (〈

Q2
+ −Q2

−
〉
iv ·D + h.c.

)

+
1
4
(
2 + 3g2

A + 12Zg2
A
)

(〈Q+〉2 iv ·D + h.c.)
}

N.

(B.11)

The results for Lraw
π and Lraw

πγ are consistent with (A.11)
of [24]9, and the result for Lraw

N is consistent with that
of [42] (to be precise, our Lraw

N is equal to the final re-
sult of [42], up to the replacement [Dµ, uµ] → (i/2)χ− −
(i/4) 〈χ−〉). The result for Lraw

Nγ agrees with Steininger’s
expression [28], (3.124), up to several signs and factors of
i [Note e.g. that the expression (3.124) in [28] is not her-
mitean, according to the definition (2.9) in that work.].

The “raw” divergent Lagrangian, obtained so far, can
be consistently used for renormalization of any process
up to the corresponding order. On the other hand, it is
perhaps not the most convenient choice, since it differs
from the standard Lagrangians used in the field. To bring
our result to the standard form, one has to perform the
standard procedure, namely use the basis from [23] for
L(p4)

π , and eliminate some of the terms by using equations
of motion (EOM) for the classical fields.

The EOM are obtained from the linear part of the
fluctuation Lagrangian,

[Dµ, uµ] =
i
2
χ− −

i
4
〈χ−〉+ 4iZF 2 [Q+,Q−]

+
i

4F 2 τaN̄ [τa, v · u] N

−
( gA

F 2 τaN̄τaS ·DN + h.c.
)

,

iv ·DN = −gAS · uN. (B.12)

Here, we have not included an external source for the
nucleon field, because we are only interested in the S-
matrix elements. The proper way of using these EOM is
to use appropriate field transformations. For the mesonic
Lagrangian, however, the use of the lowest order EOM, i.e.
replacing the structure [Dµ, uµ] by the RHS of the EOM,
is equivalent to the systematic performance of field redef-
initions [43]. For the baryonic Lagrangian, the required
nucleon field transformations are explicitly given in [26].

9 There are misprints in that equation, not present in the
final result displayed in (3.6) of that work

The resulting divergent nucleon Lagrangian corres-
ponds exactly to the heavy baryon projections of the La-
grangians (3.3) and the pertinent tables in Appendix A.
For the relativistic Lagrangians at O(p2), O(p3), O(e2p),
the simple replacements γµγ5 → 2Sµ, iDµΨ → mvµNv

and σµν → −2i[Sµ, Sν ] are all what is needed. Note that
in Appendix A we do not display terms in the Lagrangians
L(p4)

π and L(e2p2)
π , which do not contain pion fields. In ad-

dition, we drop all terms at O(e4).
We wish to note that all β-functions given in Table 2,

coincide with the ones from [23,24]. The β-functions from
Table 4 are consistent with the results of [26] (the latter
contains a misprint in β11, 2/3g5

A → −2/3g5
A). Note that

in [26], a different basis in the mesonic sector was used –
consequently, in order to compare, one has to transform
the β-functions; see below. After this is done, the βi from
Table 4 are equal to βi(i = 1 · · · 3) and to βi+1(i = 4 · · · 23)
of Table 1, [26]. The entries of Table 5, necessary for a co-
herent result, were, to the best of our knowledge, not pre-
sented yet. As has been mentioned above, the β-functions
for the O(e2p) Lagrangian, which were presented in [28],
and were used in the numerical fits in [17], correspond
to the “raw” form (B.11), rather than to the Lagrangian
which is brought to the “standard” form in the mesonic
sector by using the EOM.

Finally, we comment on the relation between the two
most commonly used choices of operator basis in the L(p4)

π

Lagrangian. Some of the β-functions are changed when
one changes the basis from [23] to [31] (the barred quan-
tities belong to the latter basis):

β̄5 =
1 + 5g2

A

24
, β̄18 = 0,

β̄19 = 0, σ̄8 =
1
8
. (B.13)

Furthermore, some of the renormalized LECs do differ in
the two bases, namely

d̄r
5(µ) = dr

5(µ) +
1

8F 2 lr4(µ),

d̄18 = dr
18(µ)− gA

2F 2 lr4(µ),

d̄19 = dr
19(µ) +

gA

4F 2 lr4(µ),

k̄r
8(µ) = kr

8(µ) +
1
2
Zlr4(µ). (B.14)

C Integrals

In this appendix, we present some useful formulae that
we have used in the calculations. Note that all formulae
given here correspond to the case of standard dimensional
regularization.

In the diagrams with virtual photons, the following
definite integrals over the Feynman parameter x are
needed [here, R = x + (1−x)r2−x(1−x)s̄ is a quadratic
polynomial in x, and s̄

.= s/m2 ≥ (1 + r)2],
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1∫
0

dx lnR = −2 + x− ln
x−

1− x−
+ x+ ln

x+

1− x+
− iπσ0

= −2 +
2r ln r

1 + r
− iπσ0 + O(σ0), (C.1)

1∫
0

dx
1
R

=
1

s̄σ0

{
ln

x−
1− x−

− ln
x+

1− x+
+ 2iπ

}

= −1
r

+ iπ
2

(1 + r)2σ0
+ O(σ0), (C.2)

1∫
0

dx
x

R
=

1
s̄σ0

{
x− ln

x−
1− x−

− x+ ln
x+

1− x+
+ iπ(x− + x+)

}

= −1 + r + ln r

(1 + r)2
+ iπ

2r

(1 + r)3σ0
+ O(σ0),

(C.3)
1∫

0

dx
lnR

R
=

1
s̄σ0

{
2Li2

(
1− x+

1− x−

)
+2Li2

(
x−
x+

)

+
4π2

3
+

1
2

ln2
(

1− x+

1− x−

)
+

1
2

ln2
(

x−
x+

)

+ 2(ln s̄ + 2 lnσ0) ·
[
1
2

ln
(

1− x+

1− x−

)

+
1
2

ln
(

x−
x+

)
+ iπ

]}

=
π2

(1 + r)2
· 2
σ0
− 2

r
− 2 ln r

r(1 + r)

+ iπ
4 ln [(1 + r)σ0]

(1 + r)2σ0
+ O(σ0 lnσ0), (C.4)

where

x± =
s̄− 1 + r2 ± λ1/2(s̄, 1, r2)

2s̄
,

σ0 = x+ − x− =
λ1/2(s̄, 1, r2)

s̄
=

2|p|√
s

,

λ(x, y, z) = (x− y − z)2 − 4yz,

Li2(z) = −
z∫

0

dt
ln(1− t)

t
. (C.5)

We also recall a useful representation [44] of the ver-
tex functions that occur in the diagrams of Fig. 10: (s12),
(s13). These are UV and IR finite, so one may put d = 4
from the beginning.

(I3; I
µ
3v) =

1
π2i

∫
d4k

(1; kµ)
[m2

1 − k2]

× 1
[m2

2 − (k + p1)2][m2
3 − (k + p1 + p2)2]

, (C.6)

Iµ
3v = I31p

µ
1 + I32p

µ
2 ,

I3 =

1∫
0

dx

{
1

A1
lnR1

− (1− α0)
A2

lnR2 −
α0

A3
lnR3

}
, (C.7)

I31 =

1∫
0

dx

{
1

A1

[(
x− 1− α0

R1

A1

)
lnR1 + α0

]

− (1− α0)
A2

[(
x− 1− α0

R2

A2

)
lnR2 + α0x

]

− α0

A3

[(
−1− α0

R3

A3

)
lnR3 + α0x

]}
, (C.8)

I32 =

1∫
0

dx

{
1

A1

[(
−R1

A1

)
lnR1 + 1

]

− (1− α0)
A2

[(
x− 1− R2

A2

)
lnR2 + x

]

− α0

A3

[(
x− 1− R3

A3

)
lnR3 + x

]}
, (C.9)

R1 = xm2
1 + (1− x)m2

2 − x(1− x)p2
1,

R2 = xm2
1 + (1− x)m2

3 − x(1− x)p2
3,

R3 = xm2
2 + (1− x)m2

3 − x(1− x)p2
2,

p2
3 = (p1 + p2)2, (C.10)

A1 = λ1/2(p2
1, p

2
2, p

2
3) · x + a1,

A2 = (1− α0)λ1/2(p2
1, p

2
2, p

2
3) · x + a2,

A3 = −α0λ
1/2(p2

1, p
2
2, p

2
3) · x + a3, (C.11)

a1 = m2
2 −m2

3 + p2
2 + α0(m2

1 −m2
2 − p2

1),
a2 = a3 = m2

2 −m2
3 − p2

2

+ α0(m2
1 −m2

2 + p2
2 − p2

3),

α0 =
p2
1 + p2

2 − p2
3 + λ1/2(p2

1, p
2
2, p

2
3)

2p2
1

. (C.12)

The integrals I3, I31 and I32 are not changed under scaling
of the arguments of the logarithms by any arbitrary con-
stant value. This property allows one to replace lnRi →
lnRi/m2 in the above expressions. Note that in the thresh-
old amplitude we have λ(p2

1, p
2
2, p

2
3) = 0. This considerably

simplifies the calculations.

D Contributions
from individual Feynman diagrams

In this appendix, we list the non-vanishing contributions
to the threshold amplitude, due to the diagrams displayed
in Figs. 8,9 and 10. The notation used is the one in (9.1)
and (9.2). The quantities CUV,IR are defined in (6.4), and
r = Mπ/m.
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Table 6. Vector-type electromagnetic diagrams Ii
V in the in-

frared regularization, up to and including O(r)

Fig. 8 Ii
V

(v1) − r
8 (7CUV + 8CIR + 16 + 30 ln r)

(v2) r
8 (7CUV + 8CIR + 16 + 30 ln r)

(v3) r
2 (CUV − CIR)

(v4) − r
4 (CUV + 2CIR − 4 + 6 ln r)

(v5) 0

(v6) − r
4 (−3CUV + 4 − 6 ln r)

Table 7. Axial-type electromagnetic diagrams Ii
A in the in-

frared regularization, up to and including O(r)

Fig. 9 Ii
A

(a4) −6rCUV + 2r − 12r(ln 2 + ln r)

(a8) −3rCUV − 2r − 3r(π + 2 ln r)

(a9) 3rCUV − 2r + 2r(π + 2 ln 2 + 3 ln r)
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